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Introduction. To describe the motion of waves on a stretched string we write

{02 = 02} p(a,t) =0 (1)

which (since the predominant waves on a string are transverse, and their
description requires therefore that we monitor two fields) relates more properly
to compressional waves on a stretched spring. Factorization of the wave operator

97 — ww0i = (0, + 50,) (0, — 3,01)
leads directly to the conclusion that ¢ can be developed
p(a,t) = f(z —ut) + g(z + ut)
where the right-running wave f(z — ut) is killed by (9, + £9,), the left-running
wave g(z + ut) is killed by (9, — 18,).

Which brings us to the simple point of this note: Suppose it were the case
that waves run right and left with distinct speeds u and v. We would then be
led to write

p(z,t) = f(z —ut) + g(z + vi)

which is a solution of

(0: + 70) (92 = 50) ¢ = {2 + (7 — 5)%:0 — agli }p =0 (2)
We observe that (2) gives back (1) in the case u = v. My intention is to examine
some of the formal/physical properties of the anisotropic system (2).
1. Lagrangian formalism. Introduce

L, 0p) = su59% — 5 (% — %) as — 592 (3)

{atg—%wwg% —%}L:O

and from

obtain
ﬁ@tt - (% - %)@tz — Pz = 0
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—which is (2). The Lagrangian (3) gives rise to a stress-energy tensor
the components of which can be described!
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By calculation we verify that
Sy +0,5% = ¢, [ﬁiptt - (% - %)ﬁptz - S%z] =0
which are statements of local energy/momentum conservation.

2. The equivalent lattice. Consider the familiar “one-dimensional crystal” that
has been assembled from identical particles—each of mass m, each coupled
to its nearest neighbors by identical springs of elasticity k. To describe the
instantaneous position of the n'® particle we write

2n(t) = na+ pn(t)
= equilibrium position + displacement

where a is the “lattice constant.” To describe the motion of the n'® particle
(unless it is an end-particle) we write

MmPn = k(Pnt1 — on) — k(en — Pn-1)
_k(_Wn—l + 2, — @n-ﬁ-l) (4)

! See CLASSICAL FIELD THEORY (1999), Chapter 1, page 63.
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This coupled system of equations can be notated

Me+Ke=0 (6)
with M = m1I and
x *
a [ «
a [ «
K=k a [«
a [ «
* * %
where o = —1, = 42, the values assigned to the xs depends upon how we elect

to manage the end-particles (coupled to fixed walls? coupled to each other?),
and all other elements are zero. We observe that M and K are both symmetric,
and that (6) can be obtained from a Lagrangian of the design

Lo = 5¢-M@+ Ko

Standard stuff. But we take now a non-standard step: we introduce into
the Lagrangian a “gyroscopic term,” writing

L=3¢-Mp+30-Gp+ 50Ky (7)

where G is an antisymmetric matrix of the design

0 -1
+1 0 -1
G=yg +1 0 -1

The equations of motion (6)—thus adjusted—become
Mep+Gp+Ke=0
which in fine detail (compare (4)) read

m@n - g(¢n+1 - Sbnfl) - k(_@nfl + 2<pn - SonJrl) (8)

We want now to “refine the lattice”—to make the particles progressively
more numerous, individually (though not collectively) less massive, more closely
spaced and to regulate the values of g and k in such a way as to obtain a
meaningful continuous (or “field-theoretic”) limit of the discrete system
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presently in hand. The program? proceeds from a notational adjustment: in
place of o, (t) we write ¢(na,t), which in the continuous limit becomes ¢(z, t)
and will be abbreviated ¢(x) when ¢ is not a participant but merely a spectator.
In that notation (8) becomes

29(a)a py(x +a) = pi(x +a)
m(a) 2a

k(a)q? PEFTU =) o) =¢—a)

m(a) a

pu(z) =

+

To recover (2)—i.e., to recover

1 — (V= u)pre — upze =0
—in the limit a | 0 we have only to stipulate that

2
m 29(a) a =v—u and lim kla)a = uv (9)
alo m(a) alo m(a)

Since

m(a)

—— models linear mass density u
a
we are at (9) requiring in effect that
gla) = 3p- (v—u)

remains constant as a diminishes, while the springs get stiffer as they get shorter,
and become infinitely stiff in the limit?

ak(a) = puw

The Lagrangian of the discrete system (which for us has become an
a-parameterized sequence of discrete systems)—which at (7) is presented as a
sum of terms—is readily seen to go over in the continuous limit into an integral:

L:/de

L=1pe] — 2puv —u)prps — puvg?l

Division by puwv gives back the Lagrange density encountered at (3).

2 See pages 5-8 in the class notes just cited, or §13.1 in H. Goldstein et al,
Classical Mechanics (3" edition 2002).

3 This development is not at all “strange:” it is basic that springs get softer
when connected in series, stiffer when chopped into fragments.
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In his Reed College thesis* Mark Galassi demonstrated that lattices of the
design
ABCABCABCABC - --

do not support anisotropic wave physics, even though they present distinct
faces to right-moving and left-moving tourists. What we have learned is that
anisotropy is a “gyroscopic” effect,® that it arises from a velocity-dependent
“gyroscopic coupling” of particles or string-elements to their (near) neighbors.

It was established on page 8 of the material just cited that gyroscopic terms
have no effect upon the energetics of oscillatory systems. At (4) we found that
such terms have no effect either upon the energy density of anisotropic (or as
we now understand them to be: gyroscopic) strings. But they do show up in
the formulee that describe energy fluz and momentum density.

3. Transformational aspects of anisotropy. If we, in the rest frame of the string,
see waves to run — with speed u, « with speed v, then we expect an observer
who is himself running — with speed ¢ to see

e waves to run — with speed u — ¢
e waves to run « with speed v + ¢

and to see apparent isotropy in the case ¢ =
case being

1(u—v), the <> wave speed in that

w=3(u+v)
Our moving observer has transformationally eliminated the anisotropy, which is

consonant with the upshot of §3 in the material just cited, where it is established
that “the gyroscopic term can always be rotated away.”

It is easy to show® that under Galilean transformation
t=t
r=x+ct
the familiar isotropic wave equation
2 \2 2 )2
{(5)" - & (5)" et =0

goes over into

2 \2 2c 9 D 1 (02 _
{(%) + wz—cc2 ox 9t~ w2—c2 (E) }Qﬁ(l',t) =0
But w4+ c=wu, w— c=wv and 2¢c = u — v so we recover the equation

Pra — (% - %)(Ptz - u_lrUSDtt =0
that appears at the bottom of page 1. From this point of view the Lorentz
transformations can be said to have been invented “to kill the gyroscopic term,”
and thus to turn isotropy into a frame-independent (observer-independent)
concept.

4 “Lagrangian field theory of anisotropic systems” (1986).

5 See §§2&3 in Chapter 3 of ADVANCED CLASSICAL MECHANICS (2004).
6 See “Electrodynamics in 2-dimensional spacetime” (1997), page 20.
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4. Running planewaves. At the end of the preceding section a fresh trail led us
back again to our starting point. So does this short trail:

Require of the function e’(**~%*) that it be a solution of (2), written
UV Pg + (U — 1) par — 1 =0 (10)

Immediately —uvk? + (v — u)kw + w? = 0 which gives

1 [ +ku, else
w=;5[(u—v)E(utv)k= { kv
So we have right/left-running planewaves
eik(mfut) and 6ik(x+vt)

All waves within each population run with the same phase velocity (u else —v),
SO superpositions

f(x—ut) = / F(k)e*@=ut) g,
g(x +vt) = /G(k)eik(mﬂ’t) dk

are non-dispersive.

A simple model of a dispersive anisotropic string results if into (10) we
introduce a “Klein-Gordon term,” writing

U Ppr + (U — 1) Pur — Pt — uvK2p =0 (10)

We then find

" (u —v)k £ \/(u+v)2k2 + duvk? (1)
2
In the case u = v = ¢ the field equation (10) assumes standard Klein-Gordon

form

Pow — =1 — K29 =0

and the dispersion equation (11) becomes
w/e=EtVk?+ K2

We conclude that anisotropy and dispersion are in any event not mutually
exclusive. Indeed, we may expect their simultaneous presence to the rule rather
than the exception, for—on the general grounds that very little in physics is
exactly so—we cannot expect material media or even the vacuum to be exactly
isotropic, however exquisite may be the approximation, nor can we expect even
the photon to be exactly massless.



